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Abstract

A new numerical method toward accurate and efficient aeroacoustic computations of multi-dimensional compressible
flows has been developed. The core idea of the developed scheme is to unite the advantages of the wavenumber-extended
optimized scheme and M-AUSMPW+/MLP schemes by predicting a physical distribution of flow variables more accu-
rately in multi-space dimensions. The wavenumber-extended optimization procedure for the finite volume approach based
on the conservative requirement is newly proposed for accuracy enhancement, which is required to capture the acoustic
portion of the solution in the smooth region. Furthermore, the new distinguishing mechanism which is based on the Gibbs
phenomenon in discontinuity, between continuous and discontinuous regions is introduced to eliminate the excessive
numerical dissipation in the continuous region by the restricted application of MLP according to the decision of the dis-
tinguishing function. To investigate the effectiveness of the developed method, a sequence of benchmark simulations such
as spherical wave propagation, nonlinear wave propagation, shock tube problem and vortex preservation test problem are
executed. Also, throughout more realistic shock–vortex interaction and muzzle blast flow problems, the utility of the new
method for aeroacoustic applications is verified by comparing with the previous numerical or experimental results.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The analysis of more complex flow physics has been required continually with the development of the aero-
space industry. Recent requirements have focused on the utility of computational aeroacoustics (CAA) and
have extended its applications widely [1,2]. Recently, there has been much attention on complex nonlinear
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phenomena beyond simple linear physics, such as vortex dynamics and shock–vortex interaction, jet screech
and shock-associated jet noise, cavity noise, gun-firing muzzle blast noise and blade–vortex interaction. [3,4].
Generally, many of these nonlinear phenomena are related to a shock or discontinuity, and its interaction with
a sound field makes the problem more complex. Therefore, higher computational cost and data storage have
been required for numerical simulations. Furthermore, the stable handling of such a discontinuity has been
one of the most important issues not only in CAA but also in Computational Fluid Dynamics (CFD). Because
most of CFD and CAA are based on continuous functions, it is essentially impossible to deal with a discon-
tinuity perfectly. In order to overcome this defect, a discontinuity is designed to be captured with a kind of
tricks, i.e., by introducing the intermediate state within a numerical shock region, which is far from physical
phenomena. This improper unphysical state may lead to spurious oscillations and instability around a discon-
tinuity. At present, shock can be captured stably by removing these oscillations. However, the decrease in the
order of spatial accuracy is unavoidable because of the introduction of some dissipation in the local region of
the shock. It is a very serious problem in CAA because the capturing of sound generation essentially neces-
sitates a higher-order accurate scheme with low artificial dissipation compared to a conventional CFD require-
ment. Thus, in order to solve acoustic problems including a discontinuity, the numerical scheme should be
chosen or developed in consideration of the contrary aspect mentioned above. We claim that the numerical

schemes for CAA must have higher-order spatial accuracy combined with a very sophisticated oscillation control

mechanism.
Firstly, concerning high-order and high-resolution schemes for the CAA, there have been compact schemes

[5], DRP (dispersion-relation preserving) schemes [6] and wavenumber-extended finite difference schemes [7]
which optimize the scheme coefficients to minimize a particular type of error instead of the truncation error.
Successively, a variety of optimized schemes [7–12] have been designed to resolve acoustic solutions more
accurately. However, central difference schemes, of which the form most optimized schemes have, may provide
spurious solutions, which may lead to inevitable stability problems that must be treated by the use of filters or
explicit dissipation terms [11–13]. The required amount of artificial dissipation is problem-dependent, and one
may need to perform laborious numerical tests to obtain the best result for a particular problem. Although
several researchers developed upwind optimized schemes [7,13–15] to improve the quality of the high wave-
number solution without adding an explicit artificial damping terms, they could not eliminate the spurious
numerical oscillations perfectly. In worse cases, additional artificial dissipation or filtering is also needed to
damp them out.

Secondly, as for the oscillation control schemes, numerous studies have been carried out since the late 1970s
and several important concepts, such as TVD, TVB and ENO, have been proposed for better convergence and
stable calculation. The concept of TVD (Total Variation Diminishing) was proven to be extremely successful
in solving hyperbolic conservation laws [16,17]. Although the TVD criterion provides a fundamental idea for
oscillation control and is still very popular, conventional TVD schemes yield somewhat unsatisfactory results
near extrema in terms of accuracy and convergence. In order to overcome this limitation, ENO (essentially
non-oscillatory) schemes [18] and the concept of TVB (total variation bounded) [19] were introduced.
Although ENO or WENO (weighted essentially non-oscillatory) [20] avoids unphysical clipping at extrema
and enhances accuracy, it may yield an undershoot and/or overshoot in multi-space dimensions, which
may influence the convergence badly because its oscillation control capability is proven only in one-dimen-
sional scalar equation. For that reason, the multi-dimensional limiting process (MLP) [21] was developed
as an oscillation control method in multi-dimensional applications. By the help of a multi-dimensional limiting
function, MLP shows robust convergence and higher spatial accuracy. As a result, it yields very desirable
properties in terms of accuracy, efficiency and robustness compared with other higher-order interpolation
schemes such as ENO/WENO.

In summary of the characteristics mentioned above, the numerical scheme which is suitable for CAA
requires the followings:

(r1) For the accurate and stable evaluation of the propagation of acoustic waves, the numerical scheme should

automatically have proper dissipation and low dispersion characteristics in a non-discontinuous region.

(r2) For monotonic behavior across a multi-dimensional discontinuity, the numerical scheme should have an

appropriate oscillation control capability without loss of accuracy in a non-discontinuous region.
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The major purpose of the present paper is to develop the new schemes which satisfy the above character-
istics for the accurate and robust aeroacoustic calculation with discontinuity. With respect to the requirement
(1), M-AUSMPW+ [22] is considered as one of the solutions. In M-AUSMPW+, the characteristics of the
central scheme and upwind scheme are switched properly and automatically based on the flow condition.
As a result, M-AUSMPW+ produces proper numerical dissipation according to the flow situation. In the
smooth region where little dissipation is necessary, M-AUSMPW+ has the characteristic of the central scheme
and minimizes the numerical dissipation. On the other hand, in the rapidly varying region or supersonic
region, it has the characteristic of the upwind scheme. Thus, numerical instability can be restricted automat-
ically. Ref. [22] is, however, focused just on the development of the higher-order upwind scheme and the
reduction of dissipation, i.e., M-AUSMPW+ has been designed without consideration of the propagation
of acoustic waves, which induces some dispersion problems. As a result, the first objective is to develop the

wavenumber-extended optimized schemes for finite volume approaches and to combine the advantages of both

the developed schemes and M-AUSMPW+.
With respect to requirement (2), MLP is thought to be the best solution for multi-dimensional discontinu-

ity. However, in the continuous region, MLP, similar to most previous limiters, has a tendency to damp out
the amplitude of linear acoustic waves seriously. Therefore, the second objective is to introduce a new distin-

guishing mechanism between the continuous and the discontinuous regions and to combine it with MLP to elim-

inate the excessive dissipation in the continuous region.
The developed scheme is tested by solving several benchmark problems presented by the Institute for Com-

puter Application in Science and Engineering/NASA Langley Research Center (ICASE/LaRC) workshop on
CAA [23], and so on. In addition, two-dimensional flow fields produced by shock–vortex interactions and by a
supersonic-discharging projectile from a shock tube are simulated numerically. The numerical results are com-
pared with solutions computed by other numerical schemes and with exact solutions or experimental results.

The outline of the remainder of this article is as follows. First, the key ideas of the present work are briefly
provided in Section 2. The method to treat the continuous region, which couples with M-AUSMPW+ and the
conservative wavenumber-extended optimization technique for finite volume approaches, is explained in Sec-
tion 3, and the oscillation control method is introduced with an emphasis on the newly developed distinguish-
ing mechanism in Section 4. In Section 5, the developed scheme is applied to a number of benchmark test cases
and two more realistic problems, i.e., the sound generation of shock–vortex interaction and the muzzle blast
flow problem. Then the conclusion of this work is drawn in Section 6.
2. Key ideas

One of the challenges in CAA is the development of a new scheme to reduce excessive numerical dispersion
and dissipation while numerical oscillations are prevented across multi-dimensional discontinuity. In order to
cope with the requirements, a numerical scheme should be able to reflect the proper flow phenomena. How-
ever, up to now, most successful numerical methods, including spatial discretization and interpolation
schemes, have been developed based on one-dimensional flow physics and proven only in one-dimensional sca-
lar wave equation. Because a system of multi-dimensional governing equations, i.e., multi-dimensional Euler
or Navier–Stokes equations, support more various flow phenomena such as multi-dimensional contact discon-
tinuity, oblique shock, expansion fan and vortex flow, a straightforward extension of the scheme, which is
based on one-dimensional flow physics, to multi-dimensional flows may lead to insufficient or excessive
numerical dissipation. In order to incorporate multi-dimensional physical phenomena, a numerical scheme
should be able to adjust the numerical dissipation properly in accordance with various multi-dimensional
physical situations. Furthermore, different from mathematics, a continuous function in computation can no
longer maintain the characteristics of it as the number of mesh points decreases. That is, if the number of mesh
points is too small to express the continuous function, it would appear to be some kind of discontinuity, which
may lead to the stability problem again and thus, require proper numerical dissipation.

With regard to this issue, the key idea of the new method is to modify the amount of numerical dissipation by

considering flow physics, which is categorized into three types: smooth region, rapidly varying region, and discon-
tinuity. In the present work, the continuous region is divided into the smooth region and the rapidly varying
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Fig. 1. Schematic diagram of the wavenumber-extended high-order finite volume scheme.
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region. Through the use of M-AUSMPW+ as the baseline scheme, the developed scheme can distinguish the
smooth region from the rapidly varying region automatically. In the smooth region, the characteristic of the
spatial discretization is switched automatically into that of the newly proposed wavenumber-extended cen-
tered finite volume scheme in order to minimize the numerical dispersion errors while no dissipation errors
are produced essentially. In the rapidly varying region including the discontinuous region, on the other hand,
the developed scheme has the characteristics of the upwind-biased scheme so the artificial dissipation is deter-
mined properly. In addition, by the newly introduced distinguishing mechanism, the developed scheme differ-
entiates the discontinuous region from the continuous region which consists of the smooth region and the
rapidly varying region. After that, only in the discontinuous region, a multi-dimensional oscillation control
scheme (MLP) is applied to provide non-oscillatory profiles without compromising the accuracy in the
non-discontinuous region. Fig. 1 summarizes the schematic of the developed scheme.

Based on the category defined above, the wavenumber-extended optimization technique and MLP are
properly applied to each region. The procedure of optimization is similar to that proposed in Ref. [24] to
derive the low-dispersion finite volume (LDFV) scheme. However, the following features have been improved.
Firstly, the developed wavenumber-extended optimization technique considers the minimization of the disper-
sion error in the smooth region and the minimization of the dissipation error in the rapidly varying region
simultaneously. Secondly, it is based on the conservative requirement of reconstruction from cell averages
rather than a non-conservative one, which is appropriate for finite volume approaches.

3. Method to treat continuous region

In the present work, the continuous region consists of the smooth region and the rapidly varying region. To
handle the continuous region accurately, we chose M-AUSMPW+ as the spatial discretization scheme. The
core idea of M-AUSMPW+ is to re-evaluate the convective quantity at cell-interface by considering flow
physics. Through the analysis of TVD limiters, simple criterion between the smooth region and the rapidly
varying region is proposed, and the convective quantity is re-evaluated according to the criterion, which
can eliminate the numerical dissipation effectively in non-flow aligned grid system. As a result, the new
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treatment of convective flux substantially improves the solution in the smooth region without compromising
the accuracy in the rapidly varying region or the discontinuous region.

However, direct applications of the form of Ref. [22] for CAA may lead to the dispersion problem because
Ref. [22] is designed for high resolution of discontinuities and high formal order of accuracy, and not for
acoustic waves. Even though schemes with higher formal order of accuracy give more accurate result for
the best-resolved wave component, it is well known that the truncation error analysis only is insufficient to
examine the dispersion errors of the schemes. Therefore, by introducing additional constraints concerning
the dispersion errors through the Fourier analysis, we developed conservative wavenumber-extended high-
order interpolations for the finite volume approach, which are intended to solve the acoustic portion of the
solution accurately, in conjunction with M-AUSMPW+.

3.1. Fourier analysis of finite volume schemes

In order to develop the conservative wavenumber-extended high-order interpolations, the following recon-
struction from cell averages with a conservative approximation has to be considered first [25].

Suppose the interpolation is carried out in a scaled coordinate n, where the grid-point spacing Dn is uni-
form. Given a scaled grid
a ¼ n1
2
< n3

2
< � � � < nN�1

2
< nNþ1

2
¼ b; ð3:1Þ
cells, cell centers, and cell sizes can be defined as
I i � ni�1
2
; niþ1

2

h i
; ni �

1

2
ni�1

2
þ niþ1

2

� �
; i ¼ 1; 2; . . . ;N : ð3:2Þ
The cell average values of a function u(n) for each cell Ii are defined as
�ui �
1

Dni

Z n
iþ1

2

n
i�1

2

uðnÞdn; i ¼ 1; 2; . . . ;N : ð3:3Þ
Given the location Ii and the order of accuracy k, a candidate stencil S(i), based on rcells to the left, s cells to
the right, and Ii itself if r,s P 0, can be chosen with r + s + 1 = k:
SðiÞ � fI i�r; . . . ; I iþsg: ð3:4Þ

Then, we can find a unique polynomial pi(n) of degree at most k � 1 = r + s, which is a kth order accurate
approximation to the function u(n) inside Ii:
piðnÞ ¼ uðnÞ þOðDnkÞ; n 2 I i; i ¼ 1; 2; . . . ;N : ð3:5Þ

And the cell average of pi(n) in each of the cells in S(i) agrees with that of u(n):
1

Dnj

Z n
jþ1

2

n
j�1

2

piðnÞdn ¼ �uj; j ¼ i� r; . . . ; iþ s: ð3:6Þ
This gives approximations to the function u(n) at two cell interfaces of cell i,
u�iþ1
2
¼ u niþ1

2
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þOðDnkÞ; uþ

i�1
2
¼ u ni�1

2
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Since the approximation from the given cell averages �uj in the stencil S(i) to the values u�
iþ1

2
and uþ

i�1
2

in Eq.

(3.5) are linear, we can find constants crj and ~crj, which depend on the left shift of stencil r of the stencil S(i), on

the order of accuracy k and on the cell sizes Dnj, such that
u�iþ1
2
¼
Xk�1

j¼0

crj �ui�rþj; uþ
i�1

2
¼
Xk�1

j¼0

~crj �ui�rþj: ð3:8Þ
If we identify the left shift r not with the cell Ii but with the point of reconstruction niþ1
2
, then it is clear that
~crj ¼ cr�1;j: ð3:9Þ
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From now on, let us discuss the Fourier analysis for dispersion characteristics. In a high-order finite volume
scheme, the flow quantities at a cell-interface is obtained from a high-order polynomial interpolation formula.
Suppose we use the above conservative approximation in stencil S(i) for u, and with Crj constants say,
uiþ1
2
¼
Xk�1

j¼0

Crj �ui�rþj: ð3:10Þ
From Eq. (3.10),
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By applying the Fourier transform to Eq. (3.11) with ni as the variable of integration and using the Derivative,
Shifting and Integration theorems, it is found
~uðaDnÞ � e
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where ~u is the Fourier transform pair of u.
Therefore, we can define the effective wavenumber of the finite volume scheme as follows:
�a � �
ffiffiffiffiffiffiffi
�1
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Crjðe
ffiffiffiffi
�1
p
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In general, the modified wavenumber k� � �aDn is a periodic complex function of k � aDn with a period of 2p.
The real part k�r and the imaginary part k�i are associated with the dispersion error (phase error) and the dis-
sipation error (amplitude error), respectively, [7,26].
k�r � �arDn ¼
Xrþs

j¼0

Crjðsin½ðj� rÞk� � sin½ðj� r � 1Þk�Þ;

k�i � �aiDn ¼
Xrþs

j¼0

Crjðcos½ðj� r � 1Þk� � cos½ðj� rÞk�Þ:
ð3:14Þ
To assure that the Fourier transform of the finite volume schemes is a good approximation to the physical
state of the flow quantity, it is required that the coefficients crj be chosen to minimize the integrated error,
Er, for a particular wavenumber range of 0 6 aDn 6 g, where,
Er ¼
Z g

0

fk½k�r � aDn�2 þ ð1� kÞ½k�i �
2gdk; ð3:15Þ
and k is the balancing coefficient for the real and imaginary (i.e., numerical dispersion and dissipation error),
respectively.

3.2. Baseline scheme: M-AUSMPW+

The convective flux of AUSM-type schemes is written as follows:
F1
2
¼ m1

2
c1

2
UL or R; ð3:16Þ
where m1
2

is the cell-interface Mach number and U is the transferred quantity vector. In M-AUSMPW+, the
flux form of Eq. (3.16) changes to Eq. (3.17) to reflect the difference between the rapidly varying region and the
smooth region more clearly:
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F1
2
¼ m1

2
c1

2
UL or R;12

; ð3:17Þ
where UL;R;12
is the modified convective quantity in a cell-interface.

Simply stated, the fundamental difference from previous AUSM-type schemes is the appropriate modifica-
tion of the convective quantity at a cell-interface in the rapidly varying region and the smooth region.

Generally, cell-interface quantities are prepared as
UL ¼ Ui þ 0:5DUji ¼ Ui þ 0:5/ðrLÞDUi�1
2
; ð3:18aÞ

UR ¼ Uiþ1 � 0:5DUjiþ1 ¼ Uiþ1 � 0:5/ðrRÞDUiþ3
2
; ð3:18bÞ
where U means a cell-averaged value.
In the extremely varying region, jDUj � 1, the following inequality is quite often observed without a

limiter.
Ui < Uiþ1 < UL or UR < Ui < Uiþ1: ð3:19Þ
Within the TVD condition, we can derive the following inequality from Eq. (3.19). The Superbee limiter is a
good example of Eq. (3.20),
Ui 6 UR < UL 6 Uiþ1: ð3:20Þ
In M-AUSMPW+, Eq. (3.20) is used as the definition of the rapidly varying region. The smooth region is
determined accordingly.

Based on the criterion to distinguish the smooth region from the rapidly varying region, M-AUSMPW+
modifies the convective quantity only in the smooth region because a stability problem may occur in the rap-
idly varying region. If we choose the average value of UL and UR as a modified quantity, the accuracy can be
greatly improved.

Fairly smooth region:
UL;iþ1
2
¼ 0:5ðUL þURÞ: ð3:21aÞ
Rapidly varying region:
UL;iþ1
2
¼ UL: ð3:21bÞ
Considering robust calculations, the modified convective quantity should satisfy the monotonic condition and
upwind characteristic in a supersonic flow additionally.

For the monotonic condition, the modified quantity should be within the TVD condition as follows.
minðUL;minmod ;UL;superbeeÞ 6 UL;12
6 maxðUL;minmod ;UL;superbeeÞ; ð3:22Þ
where Uminmod and Usuperbee are values calculated by the minmod limiter and superbee limiter at a cell-inter-
face, respectively.

In the viewpoint of the upwind characteristic, the form of U1
2
¼ 0:5ðUL þURÞ is not correct for supersonic

flow, although it is appropriate for a subsonic flow. This suggests that U1
2

should be determined after a cell-
interface state is identified, whether it belongs to the subsonic or the supersonic region.

Summarizing the mentioned requirements, the convective quantity at a cell-interface is finally formulated as
follows.
UL;12
¼ UL þ

max½0; ðUR �ULÞðUL;superbee �ULÞ�
ðUR �ULÞ j UL;superbee �UL j

min a
j UR �UL j

2
; j UL;superbee �UL j

� �
; ð3:23aÞ

UR;12
¼ UR þ

max½0; ðUL �URÞðUR;superbee �URÞ�
ðUL �URÞ j UR;superbee �UR j

min a
j UL �UR j

2
; j UR;superbee �UR j

� �
; ð3:23bÞ
where a = 1 � min(1,max(jMLj,jMRj))2 and its derivative is continuous when the Mach number becomes zero.
The details are provided in Ref. [22].
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3.3. Development of wavenumber-extended finite volume schemes and coupling with M-AUSMPW+

In M-AUSMPW+, the physical state at a cell-interface is re-evaluated with the average value,
UL;R;12

¼ 0:5ðUL þURÞ, in the smooth region. Therefore, the developed conservative wavenumber-extended
optimization technique should be applied to the re-evaluated value UL;R;12

for the minimization of the difference
between the actual wavenumber and the effective wavenumber, which is defined as Eq. (3.13) in the present
paper.

By comparing the effective wavenumbers of other optimized schemes with Eq. (3.13), we can see that the
effective wavenumbers of the finite volume scheme coincide with those of the finite difference scheme, whose
approximation is given by
of
on

� �
� 1

Dn

Xk�1

j¼�1

drjfi�rþj; ð3:24Þ
where coefficients are defined as drj = Crj � Cr(j+1) (j = 0, . . .,k � 1), dr(�1) = �Cr0, dr(k�1) = �Cr(k�1).
Thus, Eq. (3.24) has a similar form to the semi-discrete conservative finite difference scheme in Ref. [27]

which is based on the conservative approximation of the derivative from point values. However, the derivation
of Eq. (3.13) is not based on the approximation of the derivative but the approximation of the cell-interface
values using cell averages, U.

Suppose we use an interpolation which has a stencil size k and develop the pth order wavenumber-extended
interpolation for all the candidate stencils,
fni�r; . . . ; ni�rþk�1g; r ¼ 0; 1; . . . ; k � 1 ð3:25Þ

in the discontinuous or the rapidly varying region where the convective quantity at a cell-interface is formu-
lated as UL;iþ1

2
¼ UL.

For equally spaced grid points, U is given by
UðnÞ ¼ a1n
p�1 þ a2n

p�2 � � � þ ap: ð3:26Þ

And, the cell-averaged value is (see Fig. 2)
1

Dn

Z mDn

ðm�1ÞDn
UðnÞdn ¼ Uiþm; m ¼ �r; . . . ; 0; . . . ; k � r � 1: ð3:27Þ
By use of the reconstruction procedure from the cell averages presented in Section 3.1, the interpolation in the
smooth region where the convective quantity at a cell-interface is formulated as UL;R;12

¼ 0:5ðUL þURÞ is rep-
resented by the following form:
UL;R;12
¼ 0:5ðUL þURÞ ¼

Xk�1

j¼0

½crjUi�rþj þ crðk�1�jÞUi�rþjþ1�: ð3:28Þ
Then, p linear equations for coefficients crj can be obtained in the following form:
Xk�1

j¼0

bljcrj ¼ zl; for l ¼ 1; . . . ; p; ð3:29Þ
where blj and zl are constants.
ξ

i i+1i-1 

0=ξ

ξΔ ξΔ

……

i+si-r

ξΔ ξΔξΔ

Fig. 2. Cell center point and cell-interfaces.
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The rest of the k � p equations are determined by minimizing Er of Eq. (3.28). Then, Er can be expressed as
a function of the coefficients crj,
Table
The co

crj

g

Er ¼ Erðcr0; . . . ; crðk�1ÞÞ: ð3:30Þ
If we assume that the first p coefficients cr0, . . ., cr(p�1) are eliminated by Eq. (3.29), then Eq. (3.30) yields
Er ¼ Erðcrp; . . . ; crðk�1ÞÞ: ð3:31Þ
As a result, the condition for Er to be the minimum are
oEr

ocrj
¼ 0; for r ¼ p; p þ 1; . . . ; k � 1: ð3:32Þ
Therefore, Eq. (3.32) can give the optimized solution for the remaining k � p coefficients.
Given a stencil size k, a variety of schemes can be constructed with different stencils and orders of accuracy.

In the discontinuous or the rapidly varying region, however, upwind-biased schemes look more appropriate
than centered schemes because upwind schemes can represent flow physics properly for the entire Mach num-
ber range (i.e., they transfer flow information correctly according to the local feature of wave physics) and
capture discontinuity more accurately and robustly. In the present work, therefore, to make the most of
the advantage of upwind schemes, the upwind-biased interpolation formulas which have an odd-number of
stencil size k, are proposed for the discontinuous or the rapidly varying region. In the smooth region, these
upwind-biased formulas change to the centered form formulas which are non-dissipative (ki = 0) due to the
symmetry of the coefficients throughout the re-evaluation step of M-AUSMPW+. As a result, the balancing
coefficient in Eq. (3.15) yields automatically k = 1. Therefore, the integrated error of the wavenumber-
extended finite volume scheme is re-defined as
Er ¼
Z g

0

fk�½k�r;re � aDn�2 þ ð1� k�Þ½k�i;pre�
2gdðaDnÞ; ð3:33Þ
where k�r;re is the dispersion error of centered interpolation for the re-evaluation step and k�i;pre is the dissipation
error of upwind-biased interpolation for the discontinuous or the rapidly varying region. In addition, the new
balancing coefficient k* is chosen to be 0.5 to minimize both the dispersion of the re-evaluated centered scheme
in the smooth region and the dissipation of the non-evaluated upwind-biased scheme in the discontinuous or
the rapidly varying region. As pointed out in Ref. [28], from the standpoint of wave propagation, it is more
important to compare the group velocities of numerical schemes. The group velocity of a numerical scheme
determined by d�a=da should be equal to 1 if the scheme is to reproduce the same group velocity of the speed
of sound of an original PDE. In the present work, therefore, the optimization wavenumber range coefficient g
in Eq. (3.33) is selected to maximize the resolved bandwidth ðj d�a

da� 1:0 j< 0:003Þ of the re-evaluated centered
interpolation in the re-evaluation step of M-AUSMPW+. The coefficients for some of the wavenumber-ex-
tended finite volume (WEFV) schemes with k = 5 (WEFV4), k = 7 (WEFV6) and p = k � 1 are listed in
Tables 1 and 2.

Fig. 3 shows the comparison of the relative dispersion errors of the re-evaluated WEFV schemes with k = 5,
k = 7, r = (k � 1)/2 and p = k � 1 with those of the re-evaluated standard 3rd order (RS3), standard 5th order
(RS5) and standard 7th order (RS7) interpolation in the re-evaluation step of M-AUSMPW+. This compar-
ison demonstrates that the WEFV scheme matches the dispersion relation better than the standard high-order
1
efficients for the 4th order wavenumber-extended finite volume (WEFV4) schemes with k = 5

j r = 2 r = 3 r = 4

0 0.041951640579027 �0.05643372101490779 0.04775042143983386
1 �0.251139895649441 0.309068217392964 �0.441001685759335
2 0.835043176807494 �0.755268992756113 1.36983586197234
3 0.415526771017226 1.30906821739296 �2.10766835242600
4 �0.0413816927543065 0.193566278985092 2.13108375477317

0.355p 0.361p 0.367p



Table 2
The coefficients for the 6th order wavenumber-extended finite volume (WEFV6) schemes with k = 7

j r = 3 r = 4 r = 5 r = 6

crj 0 �0.010336730431374 �0.00201408799053892 �0.0088695550032267 0.08586573497425981
1 0.078687049254910 �0.004582138723433148 0.0865506633526936 �0.681861076512225
2 �0.288384289803943 0.08645534680858288 �0.349709991715067 2.32131935794723
3 0.823401275294147 �0.343051573522555 0.794057766731201 �4.43398136615186
4 0.461615710196057 0.919788680141916 �1.18304332504840 5.23798602461390
5 �0.071312950745089 0.378751194609900 1.50321733001936 �3.06519440984556
6 0.006329936235293 �0.03534742132387225 0.157797111663440 1.53586573497426

g 0.429p 0.431p 0.442p 0.451p
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Fig. 3. The comparison of the relative dispersion errors of the re-evaluated WEFV schemes with k = 5, k = 7, r = (k � 1)/2 and p = k � 1
with the re-evaluated standard 3rd order (RS3), standard 5th order (RS5) and standard 7th order (RS7) interpolation by the re-evaluation
step of M-AUSMPW+.
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interpolation with the same stencil size k and the left shift of stencil r. The low-dispersive characteristics of the
WEFV scheme are represented more clearly throughout the comparison of the resolution, kc/Dn which was
defined by Tam [28]. Here, the critical wavenumber �acDn is defined as the extent of deviation from the straight
line �aDn ¼ aDn when the error is below some tolerance s. The critical wavenumber and resolution for some of
the WEFV schemes with s = 0.01 and s = 0.001 are listed in Tables 3 and 4, respectively. As shown, although
the formal order of accuracy of the WEFV schemes is lower than that of the standard interpolation with same
k and r, the WEFV scheme has the larger critical wavenumber and the lower resolution value.

Fig. 4 shows the d�a=da curves of the optimized schemes for the re-evaluation step as a function of aDn. As
mentioned, when reducing the numerical dispersion error, the range of optimization, 0 6 aDn 6 g, is selected
instead of the range of 0 6 aDn 6 p/2. And then, the optimization wavenumber range coefficient g is selected
to maximize the resolved bandwidth. As a result, although the optimized scheme has a faster group velocity in
some frequency ranges, the increase in group velocity is bound up to the resolved bandwidth. The resolved
Table 3
The critical wavenumber and resolution for wavenumber-extended finite volume schemes and the standard interpolations with s = 0.01

Scheme �acDn kc/Dn

RS3 0.798278693277166 7.89198064918489
RS5 1.08416362475384 5.81093098509963
RS7 1.29088042136005 4.88039007777533
WEFV4 1.25286715025161 5.02846610571184
WEFV6 1.47403527306433 4.27398184773632
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Fig. 4. (a) d�a=da versus aDn for of the re-evaluated WEFV schemes with k = 5, k = 7, r = (k � 1)/2 and p = k � 1 with the re-evaluated
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Table 4
The critical wavenumber and resolution for wavenumber-extended finite volume schemes and the standard interpolations with s = 0.001

Scheme �acDn kc/Dn

RS3 0.498884913390059 12.6281629909186
RS5 0.767805244537345 8.20520574041686
RS7 0.977977793062503 6.44186406346894
WEFV4 0.837862760712398 7.51913116969584
WEFV6 1.05714592793297 5.95944214846324
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bandwidth of the WEFV4 becomes about 42.44% wider than that of the RS5, and the resolved bandwidth of
the WEFV6 becomes about 34.89% wider than that of the RS7.

Fig. 5 shows the comparison of the relative dissipation errors of the optimized schemes for the discontin-
uous or the rapidly varying region with different approximation schemes. As shown in Figs. 4 and 5, the
k
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re
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-1

-0.5
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WEFV4 (pre-evaluated)
WEFV6 (pre-evaluated)
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Fig. 5. The comparison of the relative dissipation errors of optimized schemes for the discontinuous of rapidly varying region with k = 5,
k = 7, r = (k � 1)/2 and p = k � 1 with the standard 3rd order, standard 5th order and standard 7th order interpolation.
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optimized interpolation is somewhat more dissipative than the standard interpolation with the same k and r.
Although the M-AUSMPW+ combined with wavenumber-extended optimization technique is somewhat
more dissipative in the discontinuity or the rapidly varying region, it is more important that it has the less
dispersive form in the smooth region because CAA focuses on the accurate prediction of aerodynamically gen-
erated sound as well as its long range propagation and far-field characteristics.
4. Method to treat the region of discontinuity

In order to control unwanted oscillations around a discontinuity, MLP is selected, which is developed by
analyzing conventional TVD limiters with the multi-dimensional limiting function based on the flow informa-
tion [21]. The major advantage of MLP is the removal of oscillations across a multi-dimensional discontinuity,
and it is readily compatible with higher than the 3rd order spatial interpolation. Moreover, compared with
other higher-order interpolation schemes such as ENO-type schemes, MLP shows a good convergence char-
acteristic in a steady problem, and it is very simple to implement. However, MLP may provide excessive
numerical dissipation in the continuous region because it was originally designed to control oscillations like
TVD. That is, it is not suitable for time-accurate numerical solutions of aeroacoustic problems that contain
linear waves of very small amplitudes in the far-field.

Therefore, in order to exclude this excessive dissipation of MLP from the region of continuity and provide
low dissipative/more accurate results in the far-field, the distinguishing mechanism which is based on the
Gibbs phenomenon is introduced. By using the newly introduced distinguishing mechanism, the application
of MLP is restricted to only in the region of discontinuity where the Gibbs phenomenon is observed in
computations.
4.1. Distinguishing mechanism between continuity and discontinuity

The partial Fourier sum,
XN

k¼�N

f̂ kepikx; ð4:1Þ
based on the first 2N + 1 Fourier coefficients of a non-smooth function f(x), converges slowly away from the
discontinuity and features non-decaying oscillations [29–32]. This behavior of all global approximation of
non-smooth functions is known as the classical Gibbs phenomenon. For example, it is observed that calculat-
ing values of such a function using a truncated series leads to results that oscillate near the discontinuity. As
one includes more and more terms into the series, the oscillations persist but they move closer and closer to the
discontinuity itself. Indeed, it is found that the series representation yields an overshoot at the jump, a value
that is consistently larger than that of the actual function at the jump. No matter how many terms one adds to
the series, this overshoot does not disappear. Thus, partial sums that approximate f(x) do not approach f(x)
uniformly over an interval that contains a point where the function is discontinuous.

A central scheme, due to its nature, is not able to handle a discontinuity and generates numerical oscilla-
tions. Thus, if a central scheme is applied to a discontinuity, the Gibbs phenomenon, i.e. overshoot and under-
shoot, can be easily observed near edges of numerical discontinuity. Evidently, high-order central schemes
have the Gibbs oscillation when applied to computations with discontinuity such as shock or contact surface
although they are the most suitable for representing continuous solutions. In discontinuity, therefore, the
interpolated value and the original distribution show a great discrepancy and, as a result, it is thought that
the difference between interpolated plot and original distributions is good indicator for distinguishing discon-
tinuity from continuity. In the developed scheme, the discontinuity is defined as the region where the Gibbs
phenomenon is observed when a high-order central formulation is applied for the approximation, Uapprox to U
whose distribution is already known.
Uapprox;i ¼
�Ui�2 þ 4Ui�1 þ 4Uiþ1 �Uiþ2

6
¼ Ui þOðDn4Þ: ð4:2Þ
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In the present paper, the sensing term si is defined as the difference between the interpolated value of Eq. (4.2)
and the original value Ui at point i. Then, the criterion to distinguish the discontinuous region from the con-
tinuous region is proposed as follows:

In the continuous region:
si ¼j Uapprox;i �Ui jffi OðDn4Þ; ð4:3aÞ

In the discontinuous region:
si ¼j Uapprox;i �Ui jP OðDn2Þ � OðDn4Þ: ð4:3bÞ

In the present work, the thresh-holding is chosen as O(D n2).

Then, the left and right cell-interface values are obtained as follows.
In the continuous region:
UL ¼ Ui þ 0:5bLDUi�1
2
; ð4:4aÞ

UR ¼ Uiþ1 � 0:5bRDUiþ3
2
: ð4:4bÞ
In the discontinuous region:
UL ¼ Ui þ 0:5/ðbLÞDUi�1
2
; ð4:4cÞ

UR ¼ Uiþ1 � 0:5/ðbRÞDUiþ3
2
; ð4:4dÞ
where / is MLP limiting function and bL,R is given in Section 4.3.

4.2. Multi-dimensional limiting process (MLP)

As known well, the one-dimensional TVD constraint can be written as follows.
0 6 /ðrÞ 6 minð2r; 2Þ: ð4:5Þ

Since the extension of Eq. (4.5) in the dimensional splitting manner is insufficient to prevent oscillations in
multi-dimensional flows, Eq. (4.5) needs to be modified and/or extended with appropriate consideration of
the multi-dimensional situation.

From Eq. (4.5), the property at a cell-interface satisfies the following distribution.
Ui�1 6 Ui�1
2
6 Ui; Ui 6 Uiþ1

2
6 Uiþ1: ð4:6Þ
We can introduce the concept of Eq. (4.6) in one-dimensional situation and extend it to multi-dimensional
situation as follows.
Umin
neighbor < U < Umax

neighbor: ð4:7Þ

In order to realize Eq. (4.7) in two-dimensions, the values at vertex points, U1, U2, U3 and U4 in Fig. 6, are
required to satisfy the following conditions.
minðUi;j;Uiþ1;j;Ui;j�1;Uiþ1;j�1Þ < U1 < maxðUi;j;Uiþ1;j;Ui;j�1;Uiþ1;j�1Þ; ð4:8aÞ
minðUi;j;Uiþ1;j;Ui;jþ1;Uiþ1;jþ1Þ < U2 < maxðUi;j;Uiþ1;j;Ui;jþ1;Uiþ1;jþ1Þ; ð4:8bÞ
minðUi;j;Ui�1;j;Ui;jþ1;Ui�1;jþ1Þ < U3 < maxðUi;j;Ui�1;j;Ui;jþ1;Ui�1;jþ1Þ; ð4:8cÞ
minðUi;j;Ui�1;j;Ui;j�1;Ui�1;j�1Þ < U4 < maxðUi;j;Ui�1;j;Ui;j�1;Ui�1;j�1Þ: ð4:8dÞ
Consequently, the one-dimensional limiting condition and the multi-dimensional limiting function are com-
pared as follows.

One-dimensional limiting condition:
maxð0;minð2r; 2ÞÞ: ð4:9aÞ

Multi-dimensional limiting function:
maxð0;minðar; aÞÞ: ð4:9bÞ
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Eq. (4.9b) is almost similar to the traditional TVD condition, except for the variable a by which MLP is able to
control oscillations near discontinuity. Through the use of the variable a, MLP can consider the information
on the property distribution in multi-dimensions and generate the numerical dissipation appropriate to the
flow physics (see Fig. 7).

4.3. Combination of distinguishing mechanism, wavenumber-extended finite volume schemes and MLP

Similar to the TVD MUSCL approach, left and right cell-interface values are obtained as follows with the
multi-dimensional limiting function of Eq. (4.9b)

In the continuous region (si = jUapprox, i � Uij < O(Dn2)):
UL ¼ Ui þ 0:5bLDUi�1
2
; ð4:10aÞ

UR ¼ Uiþ1 � 0:5bRDUiþ3
2
: ð4:10bÞ
Fig. 7. Comparison of TVD and MLP regions.
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In the discontinuous region (si = jUapprox, i � UijP O(Dn2)):
UL ¼ Ui þ 0:5/ðrL;i; aL; bLÞDUi�1
2
¼ Ui þ 0:5 maxð0;minðaLrL;i; aL; bLÞÞDUi�1

2
; ð4:10cÞ

UR ¼ Uiþ1 � 0:5/ðrR;iþ1; aR; bRÞDUiþ3
2
¼ Uiþ1 � 0:5 maxð0;minðaRrR;iþ1; aR; bRÞÞDUiþ3

2
; ð4:10dÞ
where values of aL,R and bL,R in Eq. (4.10) are summarized as follows.
Along the n-direction,
aL ¼ g
2 maxð1; rL;iÞ 1þmax 0; tan hiþ1

rR;iþ1

� �� �
1þ tan hi

2
4

3
5; aR ¼ g

2 maxð1; rR;iþ1Þ 1þmax 0; tan hi
rL;i

� �� �
1þ tan hiþ1

2
4

3
5; ð4:11aÞ
where rL;i ¼
DU

iþ1
2
;j

DU
i�1

2
;j
, rR;iþ1 ¼

DU
iþ1

2
;j

DU
iþ3

2
;j

and g(x) = max(1,min(2,x)).

Along the g-direction,
aL ¼ g
2 maxð1; rL;jÞ 1þmax 0;

tan hjþ1

rR;jþ1

� �� �
1þ tan hj

2
4

3
5; aR ¼ g

2 maxð1; rR;jþ1Þ 1þmax 0;
tan hj

rL;j

� �� �
1þ tan hjþ1

2
4

3
5; ð4:11bÞ
where rL;j ¼
DU

i;jþ1
2

DU
i;j�1

2

, rR;jþ1 ¼
DU

i;jþ1
2

DU
i;jþ3

2

and
tan hi ¼
ðUi;jþ1 �Ui;j�1Þ
ðUiþ1;j �Ui�1;j

Þ
				

				; tan hj ¼
ðUiþ1;j �Ui�1;jÞ
ðUi;jþ1 �Ui;j�1Þ

				
				:
Combining Eqs. (4.10) and (4.11) with b, we finally obtain MLP-5, MLP-7, MLP-O4 and MLP-O6 with
k = 5or k = 7 and r = (k � 1)/2 in Eq. (3.28).

MLP with standard 5th order interpolation (MLP-5):
bL ¼
�2=rL;i�1 þ 11þ 24rL;i � 3rL;irL;iþ1

30
; ð4:12aÞ

bR ¼
�2=rR;iþ2 þ 11þ 24rR;iþ1 � 3rR;iþ1rR;i

30
; ð4:12bÞ
MLP with standard 7th order interpolation (MLP-7):
bL ¼
6=rL;i�2rL;i�1 � 44=rL;i�1 þ 158þ 360rL;i � 68rL;irL;iþ1 þ 8rL;irL;iþ1rL;iþ2

420
; ð4:12cÞ

bR ¼
6=rR;iþ3rR;iþ2 � 44=rR;iþ2 þ 158þ 360rR;iþ1 � 68rR;iþ1rR;i þ 8rR;iþ1rR;irR;i�1

420
; ð4:12dÞ
MLP with wavenumber-extended 4th order interpolation (MLP-O4):
bL ¼ �2c20=rL;i�1 � 2ðc20 þ c21Þ
þ 2ð1� c20 � c21 � c22ÞrL;i þ 2ð1� c20 � c21 � c22 � c23ÞrL;irL;iþ1; ð4:12eÞ

bR ¼ �2c20=rR;iþ2 � 2ðc20 þ c21Þ
þ 2ð1� c20 � c21 � c22ÞrR;iþ1 þ 2ð1� c20 � c21 � c22 � c23ÞrR;iþ1rR;i; ð4:12fÞ
MLP with wavenumber-extended 6th order interpolation (MLP-O6):
bL ¼ �2c30=rL;i�2rL;i�1 � 2ðc30 þ c31Þ=rL;i�1 � 2ðc30 þ c31 þ c32Þ þ 2ð1� c30 � c31 � c32 � c33ÞrL;i

þ2ð1� c30 � c31 � c32 � c33 � c34ÞrL;irL;iþ1 þ 2ð1� c30 � c31 � c32 � c33 � c34ÞrL;irL;iþ1rL;iþ2;
ð4:12gÞ

bR ¼ �2c30=rR;iþ3rR;iþ2 � 2ðc30 þ c31Þ=rR;iþ2 � 2ðc30 þ c31 þ c32Þ þ 2ð1� c30 � c31 � c32 � c33ÞrR;iþ1

þ2ð1� c30 � c31 � c32 � c33 � c34ÞrR;iþ1rR;i þ 2ð1� c30 � c31 � c32 � c33 � c34ÞrR;iþ1rR;irR;i�1;
ð4:12hÞ
where the coefficients crj are defined in Table 1 and 2.
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5. Numerical results

In order to investigate the actual performances of the wavenumber-extended finite volume schemes, several
test cases were carried out. They included spherical wave propagation, nonlinear wave propagation, shock
tube problem and vortex preservation test problems. In a linear problem, i.e., a spherical wave propagation
problem, the computed results obtained from the M-AUSMPW+ combined with a conservative wavenum-
ber-extended optimized interpolation were compared with those obtained from AUSMPW+ combined with
the standard 5th order interpolation. In nonlinear problems, the computed results obtained by M-AUS-
MPW+ combined with MLP-OS4 (MLP-O4 with the distinguishing mechanism) were compared with those
obtained by the standard MLP-5 or MLP-5S (MLP-5 with the distinguishing mechanism). The 4-stage Run-
ge–Kutta time integration was used for 1-D problems and the third order TVD Runge–Kutta time integration
[33] was used for 2-D simulations. For boundary conditions, free stream values were specified as the inflow
conditions, and extrapolation from inner computational domain was used for outflow conditions. At the wall,
no-slip condition was specified for velocity, and adiabatic condition is used for temperature.

In addition to the calculations described above, the developed numerical method was applied to the more
realistic shock–vortex interaction and muzzle blast flow problems. The shock–vortex interaction problem was
performed at the same condition of Ms = 1.29 and Mv = 0.39 as in the experiment of Dosanjh and Weeks [34].
The computed results obtained by M-AUSMPW+ with MLP-OS4 were compared with those obtained by the
inviscid Euler simulation by Ellzey et al. [35] and the Navier–Stokes simulation by O. Inoue and Y. Hattori
[36]. For the muzzle blast flow problem, the simplified shooting noise generation and propagation mechanism
were calculated at the projectile velocity, Mp = 1.25.
5.1. Spherical wave propagation

As mentioned in Section 3.3, the developed wavenumber-extended scheme is basically based on the finite
volume approach and the conservative requirement, i.e., the approximation of cell-interface value using cell
averages is used instead of the approximation of the derivative from the point values. As a result, the disper-
sive characteristic of the developed wavenumber-extended scheme may differ from that of a well-known stan-
dard optimized finite difference scheme such as DRP or compact scheme. In addition, the quantitative
comparison between cell-averaged values of the finite volume scheme with M-AUSMPW+ and the point val-
ues of the finite difference scheme do not seem to be easy especially in Euler Equations. Therefore, a classical
aeroacoustic problem, the spherical wave propagation [37], is calculated to investigate the dispersive charac-
teristics of the developed method.

The model equation of spherical wave propagation has the form,
ou
ot
þ u

r
þ ou

or
¼ 0; r > 5; t > 0: ð5:1Þ
In this problem, the initial condition is null, i.e., u(x,t = 0) = 0 and the boundary condition at r = 5 is,
u ¼ 5 sinðxtÞ; ð5:2Þ

where, x = p/3 is chosen.

The uniform-spacing grid with Dr = 1 is used, and the 4-stage Runge–Kutta scheme is used for time inte-
gration. The time step size is determined as Dt = 0.001, so the influence of numerical errors can be neglected in
the time integration stage.

In Fig. 8a, b and c, the computed results of wave distributions at t = 400 are emphasized in 40 6 r 6 75,
220 6 r 6 250 and 380 6 r 6 420, respectively. In Fig. 8a, the numerical methods are compared with each
other in terms of the numerical dispersion and dissipation. M-AUSMPW+ combined with the standard 5th
order interpolation and M-AUSMPW+ with WEFV4 show good agreement with the exact solution. On
the other hand, AUSMPW+ with the standard 5th order interpolation and AUSMPW+ with WEFV4 show
a large discrepancy from the exact solution because AUSMPW+ always maintains the upwind flux form, i.e.,
excessive numerical dissipation occurs.
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In Fig. 8b and c, the dispersion error of M-AUSMPW+ with the standard 5th order interpolation increases
steadily as the wave progresses further. In addition, both AUSMPW+ with the standard 5th order interpola-
tion and AUSMPW+ with WEFV4 are extremely dissipated by the upwind characteristics. As expected, M-
AUSMPW+ with WEFV4 shows low-dissipation and low-dispersion characteristics compared to the 4th
order DRP scheme.

Fig. 9 shows the L2 norms of error of the computed results. M-AUSMPW+ with WEFV4 provided a more
accurate result than the 4th order DRP scheme. Compared with the DRP scheme, which is conventionally
used in CAA, M-AUSMPW+ combined with wavenumber-extended finite volume schemes controlled disper-
sion characteristics more effectively. As the wave propagated, in spite of the upwind characteristic of the spa-
tial discretization scheme, AUSMPW+ with WEFV4 was less dissipative than M-AUSMPW+ with the
standard 5th order interpolation because of the reduction of the phase error in WEFV4.

Based on the previous test problem, it was confirmed again that M-AUSMPW+ combined with WEFV4
gave low-dissipation and low-dispersion characteristics compared to the 4th order DRP scheme while it
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Fig. 8. The comparison of the M-AUSMPW+ combined with WEFV4 and standard 5th order interpolation, AUSMPW+ combined with
WEFV4 and standard 5th order interpolation, and DRP for the spatial wave distribution at t = 400. (a) 40 6 r 6 75 (b) 220 6 r 6 250 (c)
380 6 r 6 420.
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maintained the inherent advantages of finite volume schemes, i.e., the conservation and the applicability to
non-uniform mesh.

5.2. Nonlinear wave propagation

The one-dimensional Euler equations are to be solved. The initial wave is the implied simple Gaussian wave
which has the form [23],
uðx; t ¼ 0Þ ¼ 0:5 exp � ln 2 � x
5

� �2
� �

; ð5:3aÞ

pðx; t ¼ 0Þ ¼ 1

c
1þ c� 1

2
uðx; t ¼ 0Þ

� � 2c
c�1

; ð5:3bÞ

qðx; t ¼ 0Þ ¼ 1þ c� 1

2
uðx; t ¼ 0Þ

� � 2
c�1

: ð5:3cÞ
An approximate solution for nonlinear wave propagation can be obtained from simple assumptions: the flow
is isentropic and the Riemann invariant, 2a

c�1
� u ¼ 2

c�1
, is valid everywhere. Thus, the Euler equation reduces to

the nonlinear simple wave equation [37],
ou
ot
þ 1þ cþ 1

2
u

� �
ou
ox
¼ 0: ð5:4Þ
This quasi-linear wave equation can be solved by the method of characteristics analytically. As a wave prop-
agates, the initial wave evolves into a shock at the front of the pulse.

The whole computation domain is given in the range (�50, 350) with the uniform grid spacing, Dx = 1. The
4-stage Runge–Kutta scheme is used for time integration and the time step size, Dt, is 0.001.

In order to investigate the effect of the conservative wavenumber-extended optimization and the distin-
guishing mechanism on shock capturing capability and monotonic characteristics, numerical tests were per-
formed for 4 cases: M-AUSMPW+ with MLP-5, MLP-O4, MLP-5S and MLP-OS4.

Figs. 10 and 11 show the density perturbation distributions at t = 200 and t = 100, respectively. The veloc-
ity distribution at t = 200 is shown in Fig. 12. Numerical solutions were compared with the analytical approx-
imate solution obtained by Whitham’s kinematic wave method [38]. There was a good overall agreement with
the analytical approximate solution, which was obtained by the equal area rule. Although there was a discrep-
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ancy between calculated results and the analytic solution, those results were reasonable because the analytic
solution may not have captured the true thickness of the shock due to the nonlinear characteristics of the flow
around the shock. In addition, as shown in Figs. 10 and 11, all the applied schemes provided monotonic pro-
files and nearly the same results. Based on this test case, it is expected that the use of the wavenumber-extended
optimized process and the selective application of MLP by the distinguishing mechanism will not compromise
the monotonic shock capturing capability of the original MLP.

5.3. Shock tube problem

This problem is performed to investigate not only the shock-capturing characteristic but also the ability to
distinguish an expansion wave from a compression shock wave.
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The initial condition of the shock tube problem is given by
Fig. 13
shock
u ¼ 0; ð5:5aÞ

p ¼
4:4; x < �2

2:7þ 1:7 cos½ðxþ 2Þp=4�; �2 6 x 6 2;

1; x > 2

8><
>: ; ð5:5bÞ

q ¼ ðcpÞ1=c; c ¼ 1:4: ð5:5cÞ
The whole computation domain is given in the range of (�100, 100). Figs. 13 and 14 show the spatial distri-
butions of density q at t = 40 and t = 60, respectively. Fig. 15 shows the spatial distribution of velocity u at
time t = 60. As expected, the numerical simulation of a nonlinear acoustic pulse problem showed no oscilla-
tion near the shock in Fig. 13 and no undershoot/overshoot phenomenon in the density distribution in Fig. 14.
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. The comparison of density distribution of M-AUSMPW+ combined with MLP-OS4, MLP-O4, MLP-5S and MLP-5 for the
tube problem at t = 60.
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In addition, Fig. 15 shows a sharp shock formation. Also, M-AUSMPW+ combined with the wavenumber-
extended optimization did not yield entropy decreasing phenomena, such an expansion shock, because the
numerical speed of sound defined in M-AUSMPW+ is able to distinguish an expansion shock wave from a
compression shock wave.

5.4. Stationary vortex flow

To improve the accuracy of a vortex flow is one of the main objectives in the present work since it is a good
example of multi-dimensional continuous flows. Fig. 16 shows the typical computed result. It is the Thomson–
Rankine vortex model which is composed of the free vortex outside the core and the forced vortex inside.

Free vortex (outside the core):
V h � r ¼ const: and
1

q
op
or
¼ V 2

h

r
: ð5:6aÞ
Forced vortex (inside the core):
V h ¼ x � r and
dp
dr
¼ q

V 2
h

r
: ð5:6bÞ
Angular velocity x is 2 and core radius is 0.2. Maximum velocity is 0.36c1 [21]. Computational domain is
given in the range of (�1, 1) with 50 by 50 grid points with the equal grid spacing. For the grid convergence
test, 20 by 20, 40 by 40, 80 by 80, 160 by 160 and 200 by 200 grid points were used. M-AUSMPW+ was used
for the spatial discretization. MLP-OS4 was compared with MLP-O4, MLP-5 and MLP-5S. For time integra-
tion, the 3rd order TVD Runge–Kutta method was used. The time step size, Dt is 0.01, and the boundary val-
ues were fixed as the initial values. The pressure distributions were plotted at the non-dimensional time of 30.
Since viscous diffusion was not introduced, entropy was constant and a vortex flow should be maintained, so
long as a centrifugal force was balanced with the pressure gradient toward the vortex core. Thus, the ideal
solution is the initial distribution itself in the Euler equations.

Fig. 17 shows the results using MLP-5, MLP-5S, MLP-O4 and MLP-OS4 with 50 by 50 grid points. We can
see the difference according to the interpolation schemes. Firstly, it is easy to find that MLPs without the dis-
tinguishing mechanism (MLP-5 and MLP-O4) is more dissipative than MLPs with the distinguishing mech-
anism (MLP-5S and MLP-OS4). And, the use of the distinguishing mechanism seems to be essential in
time-accurate numerical simulations of aeroacoustic problems that contain multi-dimensional continuous flow
fields. Secondly, the difference between MLP-5 and MLP-O4 or between MLP-5S and MLP-OS4 is negligible.
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Fig. 17. (a) Comparison of density distributions along the line AB (50 by 50). (b) Zoomed view.
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As mentioned in Section 3, the wavenumber-extended optimization procedure reduces the kth order spatial
interpolation to pth order formal accuracy, where p 6 k � 1. As a result, the application of the wavenum-
ber-optimization technique leads to minutely larger dissipation than the standard interpolation with same k

and r. However, the difference is negligible as shown in Fig. 17.
Figs. 18 and 19 show the results of the grid convergence test. Fig. 18 shows the density distribution using

MLP-OS4 with 20 by 20, 80 by 80 and 200 by 200 grid points. Fig. 19 shows the L2 norm of the density error
of various schemes.

In M-AUSMPW+, the formal order of accuracy is increased by one order of magnitude with the averaged
value of UL;12

¼ UR;12
¼ 0:5ðUL þURÞ. Theoretically, M-AUSMPW+ can provide more accurate solutions than

the order of magnitude of an interpolation scheme. However, due to a slope limiting effect by the multi-dimen-
sional limiting function, M-AUSMPW+ combined with MLP-5 becomes slightly more diffusive than the stan-
dard fifth order interpolation result. It is located between third and fifth order accuracy. On the other hand,
the distinguishing mechanism excludes the excessive dissipation of the limiting process in the region of
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Fig. 18. (a) Density distributions of M-AUSMPW+ combined with MLP-OS4 along the line AB. (b) Zoomed view.
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continuity and thus, improves the solution. Finally, the results by MLP-5S are located between fifth and sev-
enth order spatial accuracy. In addition, even though the wavenumber-extended optimization reduces the for-
mal accuracy of the interpolation scheme by one order of accuracy, M-AUSMPW+ combined with MLP-O4
and MLP-OS4 provides nearly the same accuracy as those of M-AUSMPW+ combined with MLP-5 and
MLP-5S, respectively.

5.5. Sound generation by shock–vortex interaction

In addition to the numerical tests described above, the developed scheme is applied to the more realistic
numerical simulation of sound generation by normal shock wave and vortex flow interactions. The generated
sound in such interactions is relevant to a broadband shock-associated noise in imperfectly expanded jets and
other flows such as impulsive noise produced by gun fire, explosion, engine exhaust and a mechanical impact
process. The model problem of the interaction of an isolated vortex with a normal shock highlights the phys-
ical phenomena common to more complex flows. These phenomena have been calculated numerous times
using various numerical techniques. For examples, an upwind second-order shock-capturing scheme, FCT
scheme, ENO scheme, WENO scheme, sixth-order compact scheme and so on are used to study shock–vortex
interaction [35,36,39–41].

In the present work, a normal shock wave with the Mach number Ms = 1.29 is propagating into a station-
ary vortex with the vortex Mach number Mv = 0.39, which is the same condition as in the experiment of Dos-
anjh and Weeks [34], where the vortex Mach number is defined by Mv = uhmax/c1 and uhmax is the maximum
tangential velocity.

The Reynolds number in the experiment was 160,000. However, as is in Ref. [35], the present results are
acquired in the inviscid Euler simulation because the numerical study of this paper is mainly focused on show-
ing the effect of the vortex on the shock and the production of acoustic waves.

The initial vortex flow is assumed to have a swirling flow profile [35,36] with zero net circulation to produce
an exponentially decaying induced velocity. Thus, the initial velocity distribution is as follows [42].

Tangential velocity:
uhðrÞ ¼ Mv
r
rv

exp
1� 12

2

� �
: ð5:7aÞ
Radial velocity:
ur ¼ 0: ð5:7bÞ

Vorticity distribution:
xðrÞ ¼ Mvð2� ðr=rvÞ2Þ exp
1� 12

2

� �
; ð5:7cÞ
where the velocity is normalized by the speed of sound c1 upstream of the shock wave.
It is assumed that the flow is isentropic. Therefore, the initial distributions of the velocity, density and pres-

sure are expressed by
u0ðx; yÞ ¼ �Mv
y
rv

exp
1� f2

2

� �
; ð5:8Þ

v0ðx; yÞ ¼ Mv
x
rv

exp
1� f2

2

� �
; ð5:9Þ

q0ðx; yÞ ¼ 1� c� 1

2
M2

v expð1� 12Þ
� � 1

c�1

; ð5:10Þ

p0ðx; yÞ ¼
1

c
1� c� 1

2
M2

v expð1� 12Þ
� � c

c�1

; ð5:11Þ
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where 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xvÞ2 þ ðy � yvÞ

2
q

=rv and rv is the vortex core radius. In the above expression, the density and
the pressure are normalized by q1 and the speed of sound c1, where the subscript1 denotes the flow quantity
upstream of the shock wave. In this computation, the computational domain ranges from (�20, �20) to (5,
10). The number of grid points is 400 by 400 with the uniform grid spacing. Initially, the vortex core was lo-
cated at the point of (�5, �5) and the normal shock wave was located at x = 5. Then, 18 non-dimensional
times evolved. M-AUSMPW+ combined with MLP-OS4 was applied for spatial discretization and the 3rd
order TVD Runge–Kutta scheme with Dt = 0.01 was used for time integration.

In Fig. 20, the time development of the pressure field of the vortex interacting with the shock wave is pre-
sented. Here, the sound pressure Dp is defined as Dp = (p � ps)/ps where ps is the pressure behind the shock
wave. And, the vortex rotates in the clockwise direction. In the figures, the solid line denotes the compression
region (Dp > 0) and the dashed line denotes the rarefaction region (Dp < 0). The computational result clearly
shows the basic structure of sound generation during the development of the interaction of vortex and shock
waves. Fig. 20a shows the deformation of the initially planar shock wave and the generation of the compres-
sion region and the rarefaction region in the beginning of the shock–vortex interaction. In Fig. 20b, the gen-
eration of the precursor and its quadrupolar nature are seen clearly. As the interactions develop, the reflected
shock waves, which are emanated from the incident shock wave, are observed in Fig. 20c. Because the sense of
rotation of the vortex is clockwise, the strength and the propagation velocity of the shock wave that moves
Fig. 20. Time development of the pressure field (Dp) at (a)t = 9, (b)t = 10, (c)t = 12, (d)t = 14. Hundred contour levels from �0.48 to 0.16.
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upward, are larger than those of the shock wave that moves downward. Lastly, Fig. 20d shows the generation
of a second sound which also has a quadrupolar nature.

Fig. 21 shows the sound pressure distributions for a fixed value of h = 45� at t = 14.2, 15.2, 16.2 and 17.2, in
agreement with the Navier–Stokes results of Inoue et al. It is clearly seen that both the precursor and the sec-
ond sound propagate radially from the vortex core and their amplitudes are inversely proportional to the
square root of the radial distance r from the vortex core. In Fig. 22, the circumferential distribution of Dp

of the precursor and the second sound at t = 16.2 are plotted. In the present result, the radii of the precursor
and the second sound are about 10.7 and 8.8, respectively. The radii of the precursor and the second sound are
defined as the distance between the vortex core and the reflected shock waves at h = 90�, which are the same
definitions used in Ref. [35 and 36]. Fig. 22 clearly shows the quadrupolar natures of the precursor and the
second sound, and the anti-phasic variation of the second sound to the precursor.

For the detail comparison with the results of the Navier–Stokes simulation by Inoue et al., the isopyc-
nics, isobars of the sound pressure, and the computational Schilieren picture are presented in Figs. 23a,
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Fig. 21. Radial distributions of the sound pressure (Dp) at h = 45�.
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Fig. 23a. Isopycnics at t = 16.2. The contour levels are from 1.26 to 1.60 with an increment of 0.0029.
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Fig. 23b. Isobars at t = 16.2. The contour levels are from �0.16 to 0.24 with an increment of 0.0033.
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23b and 24, respectively. Although the grid system used in this test is coarser than that used in the Navier–
Stokes simulation (The number of grid points of the Navier–Stokes simulation was 1044 by 1170. And, the
stretched grid system, which has the grid spacing of D x = Dy = 0.0025 near the shock wave, is used.), the
present result shows good agreement with the Navier–Stokes simulation. The Mach reflection and two sli-
plines that emanated from the triple points are clearly seen in the isopycnics of Fig. 23a. In addition, the
sound pressure field in Fig. 23b and the Schilieren pictures are very similar to those of the Navier–Stokes
simulation.

In Fig. 25, the circumferential distributions of the pressure amplitude, (p2 � pp)/ps, are compared with the
experimental result [34], the inviscid Euler result [35], the Navier–Stokes result [36] and the theoretical result
[43]. Here, p2 denotes the second sound pressure and ps the pressure of the precursor. As seen from Fig. 25, the
present result shows good agreement with the experimental result. Furthermore, it is found that the quanti-
tative difference between the present result and the experimental result is almost same as that of the
Navier–Stokes and previous inviscid Euler. As mentioned in Ref. [36], the quantitative difference between
the present result and the experimental result are negligible with regard to the different flow patterns between
the Schilieren pictures in the experiment and in the computations.



Fig. 24. Computational Schilieren pictures at t = 16.2.
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In order to evaluate the capability of the developed scheme more clearly, the grid convergence test is per-
formed. AUSMPW+ with MLP5 is chosen as the representative previous scheme, where the concept of regio-
nal distinction, smooth, rapidly varying and discontinuous regions is not applied. Fig. 26 is the comparison of
density contours. Case (a)–(c) are the results obtained by AUSMPW+ combined with MLP5 on coarse (200
by 200), medium (282 by 282) and fine (400 by 400) grid systems, and cases (d)–(f) are results by M-AUS-
MPW+ combined with MLP-OS4 on the same grid systems. As in Fig. 26a and b, AUSMPW+ with
MLP5 on the medium grid system provides more diffusive result than M-AUSMPW+ with MLP-OS4 on
the coarse grid system, especially around the reflected shock waves and in the circle region. M-AUSMPW+
with MLP-OS4 on the medium grid system almost reaches the grid converged result, M-AUSMPW+ with
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MLP-OS4 on the fine grid system. Figs. 27 and 28 show the more quantitative comparisons of density distri-
bution along the line x = �13.7 and in the core region, respectively. As seen in Fig. 27, M-AUSMPW+ with
MLP-OS4 captures the reflected shock wave more sharply than AUSMPW+ with MLP5. The density profile
calculated by AUSMPW+ with MLP5 is somewhat smeared. Although the core pressure calculated by AUS-
MPW+ with MLP5 seems to be similar to that by M-AUSMPW+ with MLP-OS4 (see Fig. 28), it cannot
describe the wave profile around the reflected shock waves because MLP limiter never admits local extrema
like conventional TVD schemes. Overall, M-AUSMPW+ with MLP-OS4 gives about two times more accu-
rate result than that of MLP5. Fig. 29 shows the decomposition of the computational domain into smooth,
rapidly varying and discontinuous regions by the proposed distinguishing mechanism at three different shock
positions. As shown in the figures, the developed distinguishing mechanism keeps the application of the
Fig. 26. Density distributions according to grid points and numerical schemes.
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limiting process bound around the shock. And, it can be inferred that this process helps M-AUSMPW+ with
MLP-OS4 to give a reduction effect more than two times than that of the AUSMPW+ with MLP5, which is
shown in Fig. 26.
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5.6. Muzzle blast flow problem

The purpose of the muzzle blast flow simulation is to evaluate the applicability of the developed scheme to
the more complicated mixture of various linear and nonlinear phenomena. The muzzle blast flow problem can
be considered as an impulsive sound generation process. This impulsive sound commonly contains compli-
cated physics, which consists of several nonlinear and linear phenomena such as bow shock, vortices, blast
shock waves, projectile, shear layer and their interactions. Although several researches have been performed
on the muzzle blast problem [44–46], the flow characteristics of muzzle blast and shooting noise generation
mechanism have not been revealed clearly. Schmidt and Shear [46] have performed the optical measurements
of blast waves and propellant gases. However, their experimental approaches had difficulties in discriminating
between the flow structure and muzzle flash. The recent numerical study on the muzzle blast flow is performed
by Jiang et al. [44,45]. In the study, numerical simulation was essentially based on the low-order numerical
methods. Therefore, it was not sufficient to investigate the complex phenomena occurring in the muzzle blast
flow.

For a convenient comparison with the conventional approach, the present numerical procedure is based on
that of Ref. [44]. It is composed of the two computational steps. The first step is the calculation of precursor
wave with the exit condition of the shock tube, and the second one is the calculation of the moving projectile
under the initial condition which is the shock tube solution at the first step. In the first step, the precursor wave
is generated by the gases in front of the projectile. It is assumed that the propellant gas velocity at the exit of
the shock tube is equal to the launching speed of the projectile, which was confirmed in the previous research
of Schmidt et al. [46]. To investigate the influence of the drag and friction in discharging process from shock
tube, the flow conditions behind the projectile are obtained from Ref. [44]. According to this consideration,
the exit condition of the shock tube can be calculated by using the Poisson’s adiabatic equation.

Finally, the exit condition of the shock tube is obtained as follows:

gas speed of propellant gas: Me = 1.25,
ratio of the pressure behind the shock: pe/p1 = 4.5,
ratio of the density behind the shock: qe/q1 = 2.667.

The surrounding conditions outside of the shock tube are assumed to be ambient conditions.
The second step is performed after the first step solution is obtained. The initial flow field of the second step

calculation is imposed from the first step solution. In this calculation, the projectile is assumed as a cylindrical
body, which is appropriate to observe the generation mechanism of blast waves.

The governing equations for the computation are axisymmetric Euler equations. The computation domain
uses 700 by 300 grid points with a uniform grid spacing, Dx = Dy = 0.025. The diameter of the projectile is 1
and the thickness of the shock tube wall is 0.5, which is non-dimensionalized by the diameter of the projectile.
The shock tube length is assumed to be identical to the projectile length. The axisymmetric boundary condi-
tion is applied along the shock tube axis, whereas the other far boundary conditions are the nonreflecting
boundary conditions. For the last part of the domain, which is the shock tube wall, the slip boundary condi-
tion is applied. In addition, a moving boundary condition is implemented to describe the supersonic projectile,
whose speed is Mp = 1.25.

Fig. 30 shows the density distributions at non-dimensionalized times of 100, 220, 340, 460, 580 and 700,
respectively. As the projectile is discharged from the shock tube, the flow is compressed and the primary blast
wave is generated. In Fig. 30(a), the generations of the primary blast wave, precursor shock wave, vortex ring
and mach disk are presented. After the projectile moves out, secondary blast wave generation can be observed,
as shown in Fig. 30(b). Successively, Fig. 30(c) shows the development of the bow shock in front of the super-
sonic moving projectile. After that, as the projectile moves farther, several complex vortices are generated
(Fig. 30(d)–(f)) due to the interactions among the shock and projectile or shear layer and shock, jet and shock,
and so on.

The muzzle blast flow-field is generally characterized by two blast waves, a shock wave and moving projec-
tile interactions. In Fig. 30, the basic structures of the muzzle blast flow including the generations and defor-
mations of the primary blast wave, precursor shock and the secondary blast wave are observed with respect to





Fig. 30. Density distributions of muzzle blast flow at (a) t = 100, (b) t = 220, (c) t = 340, (d) t = 460, (e) t = 580, (f) t = 700.
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it retained the advantages of the finite volume scheme as it minimized the numerical dispersion and dissipation
errors and that it can be easily implemented to existing high-order finite volume solvers.

As a consequence, it was confirmed that the developed scheme can be a good candidate for the nonlinear
CAA related with shock or discontinuity and its interaction with the sound field that it generates.
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